Ultrafast charge carrier relaxation and charge transfer processes in CdS/CdTe thin films.

نویسندگان

  • Bill Pandit
  • Ruvini Dharmadasa
  • I M Dharmadasa
  • Thad Druffel
  • Jinjun Liu
چکیده

Ultrafast transient absorption pump-probe spectroscopy (TAPPS) has been employed to investigate charge carrier relaxation in cadmium sulfide/cadmium telluride (CdS/CdTe) nanoparticle (NP)-based thin films and electron transfer (ET) processes between CdTe and CdS. Effects of post-growth annealing treatments to ET processes have been investigated by carrying out TAPPS experiments on three CdS/CdTe samples: as deposited, heat treated, and CdCl2 treated. Clear evidence of ET process in the treated thin films has been observed by comparing transient absorption (TA) spectra of CdS/CdTe thin films to those of CdS and CdTe. Quantitative comparison between ultrafast kinetics at different probe wavelengths unravels the ET processes and enables determination of its rate constants. Implication of the photoinduced dynamics to photovoltaic devices is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application

CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...

متن کامل

Characterization of Photo-Induced Charge Transfer and Hot Carrier Relaxation Pathways in Spinel Cobalt Oxide (Co3O4)

The identities of photoexcited states in thin-film Co3O4 and the ultrafast carrier relaxation dynamics of Co3O4 are investigated with oxidation-state-specific pump−probe femtosecond core level spectroscopy. A thin-film sample is excited near the 2.8 eV optical absorption peak, and the resulting spectral changes at the 58.9 eV M2,3edge of cobalt are probed in transient absorption with femtosecon...

متن کامل

Ultrafast exciton dynamics in 2D in-plane hetero-nanostructures: delocalization and charge transfer.

In this article we study the ultrafast dynamics of excitons and charge carriers photogenerated in two-dimensional in-plane heterostructures, namely, CdSe-CdTe nanoplatelets. We combine transient absorption and two-dimensional electronic spectroscopy to study charge transfer and delocalization from a few tens of femtoseconds to several nanoseconds. In contrast with spherical nanocrystals, the re...

متن کامل

Comparison of Close-Spaced Sublimated and Chemical Bath Deposited CdS Films: Effects on CdTe Solar Cells

Close-spaced-sublimated (CSS) CdS films exhibit strong fundamental edge luminescence, high optical absorption, and a bandgap of ~2.41 eV. Structurally, these films show good crystallinity with thickness-dependent grain sizes that vary between 100-400 nm. In contrast, chemical-bath-deposited (CBD) CdS exhibits subband luminescence, lower absorption, and a thicknessdependent bandgap. These films ...

متن کامل

Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells.

Organic-inorganic hybrid perovskite solar cells have emerged as cost effective efficient light-to-electricity conversion devices. Unravelling the time scale and the mechanisms that govern the charge carrier dynamics is of paramount importance for a clear understanding and further optimization of the perovskite based devices. For the classical FTO/bulk titania blocking layer/mesoporous titania/p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 26  شماره 

صفحات  -

تاریخ انتشار 2015